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Abstract 
Experimental work which uses laser-cooled ions in Penning traps is 
reviewed. With laser-cooling the ions are strongly coupled and exhibit 
spatial correlations characteristic of a liquid or crystal. In plasmas with 
dimensions less than 10-15 interparticle spacings, the observed correlations 
are strongly affected by the finite size and shape of the trapping potential. 
Plasmas with greater than 60 interparticle spacings should exhibit corre- 
lations characteristic of an infinite one-component plasma. Radiation pres- 
sure from a laser is also used to apply a torque to the plasma and change 
the plasma density. This permits access to all possible thermal equilibria, 
including the maximum density state where the plasma undergoes Brillouin 
flow. If the size of the plasma is small compared to the trap dimensions, 
Penning traps produce plasmas with simple shapes whose normal modes 
can be calculated exactly. The modes provide a nondestructive diagnostic 
technique for obtaining information on the plasma density and shape. 

1. Introduction 

Ions in a trap form a nonneutral plasma when the ion 
density is sufficiently high or the ion temperature sufficiently 
low that the Debye length 1, (see Section 2) is small com- 
pared to the ion cloud dimensions [l, 21. This paper reviews 
some of the properties of ion plasmas in a Penning trap. 
Because Paul or r.f. (radio frequency) trap plasmas can be 
considered to be special cases of Penning trap plasmas (see 
Section 2), the general discussion can be applied to r.f. traps 
as well. Throughout the paper we will give experimental 
examples from measurements done on plasmas of laser- 
cooled ’Be’ ions in a Penning trap. Laser-cooling makes it 
easy to satisfy the inequality AD < plasma dimensions. 
However, cooling with a room temperature buffer gas has 
also been used to obtain I., much less than the plasma 
dimensions in some r.f. trap experiments [3]. 

Section 2 reviews the static, thermal equilibrium proper- 
ties of cold Penning trap plasmas. The plasmas have 
a uniform density and, if the plasma dimensions are small 
compared to the trap dimensions, have the simple shape of a 
spheroid. The aspect ratio of the spheroid can be related to 
the ion density and parameters of the trap. Section 3 dis- 
cusses the correlated behavior of the ions, which occurs 
when the ion thermal energy is small compared to the 
potential energy between nearest neighbor ions. This state 
can be obtained with laser-cooling. In small ion plasmas the 
spatial correlations have been observed using imaging tech- 
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niques. Recently, Bragg scattering has been used to obtain 
information on the correlations when imaging techniques 
were no longer possible. Section 4 describes how radiation 
pressure from lasers can be used to apply a torque to a 
Penning trap plasma and increase the ion density. When 
axial asymmetries in the trap are minimized, it is possible to 
obtain the maximum density state allowed under thermal 
equilibrium, sometimes called the Brillouin limit. Section 5 
discusses the electrostatic plasma modes of Penning trap 
plasmas. In the limit that the plasmas have uniform den- 
sities and spheroidal shapes, these modes can be calculated 
exactly. The modes provide a nondestructive diagnostic 
technique for obtaining information on the plasma shape 
and density. This should be useful in experiments where 
fluorescence techniques are not available, such as in anti- 
matter experiments where current techniques to obtain 
diagnostic information involve dumping the plasma out of 
the trap. The modes can also resonantly enhance trap asym- 
metries and set limits to the density that can be obtained in 
Penning traps. 

2. Static properties 

The Penning trap shown in Fig. 1 consists of four cylin- 
drical electrodes. The outer cylinders are called the 
“endcap” electrodes in analogy with the endcaps of a hyper- 
bolic Penning trap [4]. The inner cylinders are electrically 
shorted and together called the “ring” electrode. With a 
positive potential V, applied to the endcap electrodes with 
respect to the ring electrode, positively charged particles 
(ions) can be electrostatically confined in the direction of the 
trap axis. A static, uniform magnetic field B = Bi parallel to 
the trap’s symmetry axis confines the ions in the radial 
direction. Near the center of the trap, where the ions are 
confined, the radial component of the trap electric field is 
directed outward. This field produces an E x B circular drift 
of the ions about the symmetry axis of the trap. As the ions 
rotate through the magnetic field, they experience a Lorentz 
force directed radially inward. 

With long enough confinement, the ions evolve to a state 
of thermal equilibrium where the rotation of the ions about 
the magnetic field axis is uniform or “rigid” at a frequency 
w, [S-71. Specifically, the rotation frequency w, is indepen- 
dent of the radial position of an ion in the plasma. In the 
limit of zero temperature, the plasma density no is constant 
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Fig. 1. Sketch of a Penning trap used to trap plasmas of Be' ions. The size 
of the plasma is exaggerated. The trap electrodes are right circular cylinders 
with an inner radius of 1.27cm. They provide a quadratic potential near 
the trap center. Work was done with B ranging from O32T to 6T and Vr 
ranging from 1OV to about 1.5kV (at 6T).  For 9Be' ions this gives a 
cyclotron frequency ranging from 1.4 MHz to 10 MHz and a trap axial 
frequency ranging from 125 kHr to 1.54 MHz. 

in the plasma interior and drops abruptly to 0 at the plasma 
edge. The density depends on the rotation frequency accord- 
ing to (SI units are used throughout) 

(1) no = 2co mw,(R - w,)/q2, 

where R = qB/m is the ion cyclotron frequency, 4 and m are 
the charge and mass of the ion, and E,, is the permittivity of 
vacuum. Nonneutral plasmas exhibit collective effects such 
as plasma waves just like neutral plasmas. The plasma fre- 
quency wp is a function of the plasma density and is there- 
fore related to the rotation frequency through the equation 

In this paper we use the convention that the symbols w, and 
R denote positive quantities. However, for positive ions, the 
sense of the rotation and the sense of the cyclotron motion 
with respect to B are actually negative. Specifically, when 
viewed from above the x-y plane, the ions move in clock- 
wise orbits. For nonzero temperatures, the density drops to 
0 at the plasma edge in a distance on the order of a Debye 
length I ,  [ 5 ,  71, where 

(3) 

k is Boltzmann's constant, and T is the ion temperature. 
When I . ,  is much less than the plasma dimensions, the 
plasma therefore has a uniform density, given by eq. (I), 
with sharp boundaries. For very low temperatures, there are 
correlations in the ion positions [S-lo] (see Section 3), and 
the ion density is not constant over length scales small com- 
pared to the inter-ion spacing ( -  n; However, as long as 
the inter-ion spacing is small compared to the plasma 
dimensions (this is, as long as the number of ions N 4 I), 

many problems. Two examples are the plasma shape 
(discussed in the next paragraph) and the frequency depen- 
dence of plasma modes with wavelength comparable to the 
plasma dimensions (discussed in Section 5). 

The plasma boundary has a simple shape in the limit that 
the plasma dimensions are small compared to the trap 
dimensions [6, 113. Near its center, the electrostatic poten- 
tial of the trap, relative to the potential at the trap center, 
can be written as 

the plasma can be treated as a constant-density plasma for 

mw2 
&(r, z) = 2 (2z2 - r2), 

4q 
(4) 

where r and z are cylindrical coordinates, and o, is the fre- 
quency at which a single trapped ion (or the center-of-mass 
of a cloud of ions) oscillates along the z-axis. For the cylin- 
drical trap of Fig. 1, 

where po = 1.27cm is the inner radius of the trap electrodes 
and A, is a dimensionless parameter that depends on the 
geometry of the trap design. For the trap of Fig. 1, A,  = 
0.236. In general, the total electrostatic potential is the sum 
of the trap potential, the space charge potential of the ions, 
and a potential due to the induced image charges on the 
trap electrodes. If the plasma dimensions are much less than 
the trap dimensions, the trap potential over the region of 
the plasma is given by eq. (4), and the effect of the induced 
image charges can be neglected. In this case the shape of the 
plasma boundary is a spheroid (an ellipsoid of revolution) as 
shown in Fig. 2 [6, 11, 121. Let 2r, and 2zo denote the diam- 
eter and the axial extent of the plasma as shown in Fig. 2. 
The plasma aspect ratio tl = zo/ro is related [6] to the 
plasma frequency up and the trap axial frequency w, by 

where Q; is the associated Legendre function of the second 
kind [13]. Figure 3 shows a graph of w:/w," us. the plasma 
aspect ratio a. Experimental measurements of w,, up, and CI 
discussed in Ref. [6] are in good agreement with the theo- 
retical calculation of eq. (6). As discussed in Section 4, laser 
torques can be used to change the plasma rotation fre- 
quency and aspect ratio. 

It is instructive to consider the plasma equilibrium as a 
function of rotation frequency w, for fixed trapping con- 
ditions (fixed wz, R, and N ) .  Constant density equilibria 
exist for w,  < Q/$ and w, < 0, < R - a,,,, where 

W, = R/2 - (Q2/4 - 0 ~ 2 / 2 ) ~ ' ~  (7) 
is the single-ion magnetron frequency [4]. For w, slightly 
larger than w,, wz/w,' N 1, and the plasma is shaped like a 
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Fig. 2. Spheroidal shape of a Penning-trap plasma. This shape is obtained 
under the conditions of thermal equilibrium and 2, < (plasma 
dimensions) 4 (trap dimensions). 

pancake (an obiate spheroid). In the limit that w, -+ w,, the 
plasma’s aspect ratio r -+ 0, and the plasma’s radius ro -+ cc. 
As w, increases. w:/wi decreases, and the plasma’s aspect 
ratio a increases by decreasing ro and increasing zo. At 
w, = R/2 the plasma obtains its maximum aspect ratio 
(smallest ro and largest zo) and maximum density nB = 

‘E 

N 
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a = z o / r 0  
Fig. 3. Relationship between the plasma aspect ratio z and w:/wi for 
spheroidal-shaped plasmas in a Penning trap. The solid line is a theoretical 
curve from eq. (6) with no adjustable parameters. The experimental mea- 
surements, described in Ref. [6], were taken with two different traps at 
three different axial frequencies between wJf2 = 0.071 and 0.121 (from 
Ref. [SI). 
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Fig. 4. Radius ro of a plasma of 2 2000 Be+ ions as a function of rotation 
frequency 0,. The radius is plotted in units of rb ,  the plasma radius at the 
Brillouin limit, and the rotation frequency is plotted in units of the cyclo- 
tron frequency 0. The solid line is a theoretical curve involving no adjust- 
able parameters. The data were taken with R/2n = 1.4 MHz and ~ $ 2  = 

0.15 1 (from Ref. [15]). 

~ ~ m R ’ / ( 2 q ~ ) .  The condition w, = R/2 is often called Bril- 
louin flow [14]. In a frame of reference rotating with the 
plasma, the motion of an individual ion within the non- 
neutral plasma consists of circular gyrations (perturbed 
cyclotron orbits) at the frequency R - 204. At Brillouin 
flow, the frequency of the gyro-orbits is therefore 0. This 
means the orbits become free streaming (straight line 
trajectories), and the plasma behaves in many ways like an 
unmagnetized plasma [14]. Therefore at w, = R/2, a 
Penning trap plasma behaves dynamically like a plasma 
confined in an r.f. (Paul) trap (neglecting the r.f. 
micromotion). As w, increases beyond 5112, the plasma’s 
aspect ratio r and density no decrease. Because no is an even 
function of w, about w,  = R/2 [see eq. (l)], the plasma’s 
aspect ratio, radius, and axial extent are even functions of w, 
about w, = R/2. Figure 4 shows a graph of the radius of a 
plasma of ’Bef ions as a function of rotation frequency. 
The plasma’s rotation frequency and radius were measured 
with techniques described in Ref. [lS]. Good agreement was 
obtained between the observed and predicted dependence of 
the plasma’s radius on rotation frequency. 

3. Strong coupling 

The previous section on thermal equilibrium neglected any 
effects due to ion-ion correlations. Correlations become 
important at low temperatures. In a frame of reference 
rotating with the ions, ions in a Penning trap behave as if 
they are immersed in a uniform density background of 
opposite charge [lo]. The trapping fields provide the 
uniform background of opposite charge. This background 
charge density depends on w,. For a low temperature 
plasma, the ion charge density neutralizes the fictitious 
background charge density out to the plasma boundary. A 
single species of charge immersed in a uniform density back- 
ground of opposite charge is a one-component plasma [16]. 
It follows that the static, thermodynamic properties of ions 
in a Penning trap are the same as those of a one-component 
plasma [lo]. This is also true for ions in Paul traps if the 
micromotion can be neglected. The thermodynamic proper- 
ties of a one-component plasma are determined by the , 



Coulomb-coupling parameter 
“ 2  

(8) Y r =  
4ns0 a, k ,  T ’ 

where a, is the Wigner-Seitz radius given by 4nn0 a213 = 1. 
Calculations [16, 171 for the infinite one-component plasma 
predict that for r > 2, the plasma should exhibit liquid-like 
behavior characterized by short range order, and at around 

= 170 a liquid-solid phase transition to a body centered 
cubic (b.c.c.) lattice should take place. With laser cooling, 
coupling parameters of several hundred can be obtained 
with ions in traps [SI. 

3.1. Shell structure 
Ion trap experiments until now have obtained laser-cooling 
on small plasmas. Typical plasma dimensions are less than 
20 inter-particle spacings [SI. (In the quadrupole storage 
ring trap of Ref. [18], the plasmas were dimensionally large 
along the quadrupole circumference, but less than 8 inter- 
particle spacings in the other directions.) It is not clear that 
such small systems will behave like infinite-volume one- 
component plasmas. A number of computer simulations [9, 
19, 201 with less than a few thousand cold ions in a trap 
found something quite different than bcc order. The ions 
eventually froze into concentric, spheroidal shells rather 
than bcc planes. Each spheroidal shell consisted of a dis- 
torted two-dimensional hexagonal lattice. There was no well 
defined liquid-solid phase transition ; the freezing occurred 
over a broad range of couplings r. For example, spatial 
oscillations in the density were obtained with as low as 
10. At N 100, very little diffusion occurred between shells, 
but very rapid diffusion was found within a shell [9]. For 
r > 300, the diffusion within a shell was also slow [SI. 

Experimentally, shell structure has been observed with up 
to 20000 laser-cooled Bef ions in a Penning trap [SI. The 
shells were observed by illuminating a thin cross section of 
the plasma with laser beams and imaging the laser-induced 
fluorescence onto a photon-counting imaging tube. Qualit- 
ative agreement was observed with the simulations, except 
that, in some cases, open-ended cylindrical shells were 
observed in the experiments. At present there is no convinc- 
ing explanation for the open-ended cylindrical shells. One 
possibility is that shear in the plasma rotation might 
produce such a structure. 

Strong coupling has also been attained with small ion 
clouds (typically less than 30 ions) in quadrupole r.f. traps 
[21, 221. For a recent review and complete list of references, 
see Ref. [ 2 3 ] .  The small “crystals” were observed by imaging 
the laser-induced fluorescence. Recently linear rf traps have 
been used to create one-dimensional and other types of 
strongly coupled structures [ 18, 241. Elongated, crystallized 
ion structures have been observed in a race-track Paul trap 
(a miniature storage ring) at the Max Planck Institute for 
Quantum Optics in Garching [18]. They observed various 
structures ranging from a simple string on the axis of the 
trap to more complex shapes like multiple layers (shells) of 
intertwined helices. These structures agree with the simula- 
tions of crystallized structures expected for particles in 
high-energy storage rings [19, 25, 261. In contrast with the 
Penning trap experiments, many of the r.f. trap experiments 
observe a sudden transition between a disordered and 
ordered state. However, this sudden transition should not 
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be thought of as a thermodynamic phase transition. Rather, 
it is a transition due to a sudden and large change in the 
energy of the trapped ions. This sudden change in energy 
can be understood in terms of the nonlinear nature of the r.f. 
heating [27]. 

3.2. Bragg scattering 
So far the observed ion correlations (shell structure) are 
strongly affected by the finite size and boundary of the 
plasma. How large must the ion plasmas be in order to 
exhibit infinite-volume behavior? Two different analytical 
methods [28, 291 give similar predictions. The plasmas may 
have to be greater than 60 inter-particle spacings along their 
smallest dimension in order to exhibit a bcc structure. A 
spherical plasma with 60 shells has about lo6 trapped ions. 

In recent experimental work at the National Institute of 
Standards and Technology (NIST), strong couplings have 
been obtained on plasmas of several hundred thousand 
laser-cooled Be+ ions. This work is being done in a new 
large Penning trap which uses 4 cm diameter cylindrical 
electrodes [30]. Shell structure has been difficult to observe 
in the images of these larger plasmas. In some cases, shells 
are observable near the plasma boundary, but not in the 
plasma interior. Imaging techniques work well for observing 
shell structure because it is preserved by the plasma rota- 
tion. However, as the clarity of the shells decreases with 
increasing ion number, a different technique is required to 
obtain information on the ion correlations. 

Bragg scattering [31] can be used to obtain this informa- 
tion. The Bragg scattering signal as a function of the scat- 
tering angle is just the Fourier transform of the ion pair 
correlation function. The relative positions and heights of 
the Bragg scattering peaks therefore give information on the 
spacings and relative positions of the ions in the strongly 
coupled plasma. At NIST, Bragg scattering has been accom- 
plished with the 313 nm cooling laser while the nearest 
neighbor distance between the Be’ ions ranges from 5 to 
15pm. This means the first and strongest Bragg scattering 
peak occurs at a small scattering angle between 1 and 3 
degrees. This makes the experiment difficult because 
forward scattered light off of the laser windows may hide 
the Bragg scattering signal. Two steps were taken to mini- 
mize the forward scattered light. First, an image of the ion 
fluorescence was formed in the center of a small aperture. 
The Bragg scattering pattern from this image was then 
observed. In addition, because the ion fluorescence is mainly 
circularly polarized along the direction of observation (close 
to the B-field direction) and the forward scattered light from 
the laser is mainly linearly polarized, a pair of crossed pol- 
arizers can be used to preferentially attenuate the laser light 
scattered off the trap windows. With these steps, the NIST 
group has recently been able to observe Bragg scattering off 
plasmas of 40000 ions with a good signal-to-noise ratio. At 
this point, more analysis is needed to determine what infor- 
mation the Bragg scattering pattern is providing about the 
ion correlations. 

4. Laser beam torques 

In most Penning trap experiments, the rotation frequency 
w, is much less than R/2, corresponding to low densities and 
strongly magnetized plasmas. In laser-cooled Penning trap 
plasmas, the lasers can also be used to provide a torque to 
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increase the ion density and obtain all possible states of 
thermal equilibrium, including Brillouin flow. This is done 
by directing a laser beam to the side of the rotating plasma 
that recedes from the laser beam, as shown in Fig. 5. In Fig. 
S ,  the laser applies a torque which should increase the 
plasma rotation frequency. As the ions rotate through the 
magnetic field, they experience a u x B Lorentz force which 
is directed radially inward. An increase in the plasma rota- 
tion frequency will therefore increase the radial confining 
force which the ions experience. As discussed in Section 2, if 
the rotation frequency is initially low, a, 5 a,,,, increasing 
LO, decreases the plasma radius and increases the ion density. 
In general, the plasma radius will decrease and the ion 
density increase until the torque due to the laser beam is 
offset by some other torque, for example, due to asym- 
metries in the trap construction. In this manner the slow 
radial expansion of a Penning trap plasma which normally 
occurs can be stopped, and a steady state distribution can 
be obtained. 

In experiments [l5, 321 with laser-cooled Be' ions, laser 
torques were used to increase the plasma rotation frequency 
and obtain all possible states of thermal equilibrium. Typi- 
cally one laser beam was directed near the center of the 
plasma and used to cool the plasma, and one beam was 
directed near the radial edge of the plasma and applied a 
strong torql;e to the plasma. The applied torque was 
changed by varying the frequency of the torque beam. Ini- 
tially with a, + R, the frequency of the torque laser beam 
was tuned below the cooling transition frequency. This 
produced very little ion fluorescence and torque. As the 
torque laser frequency was increased above the cooling 
transition frequency, the torque laser became resonant with 
the Doppler shifted ions in the beam path. This produced 
ion fluorescence and a torque on the plasma which 
increased the plasma rotation frequency. The plasma rota- 
tion frequency could be increased smoothly through Bril- 
louin flow to frequencies slightly less than the cyclotron 

Y 

laser 

I 
I 

Fig. 5. Plasma cross section showing the position of the laser beam for 
applying a torque which increases the plasma rotation frequency. The mag- 
netic field is out of the page and positively charged trapped ions are 
assumed. In Refs [lS, 321, laser torques were used to achieve all possible 
thermal equilibria, including Brillouin flow. 
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frequency, except for a small range of rotation frequencies 
where the plasma acquired a diffuse boundary and low ion 
fluorescence characteristic of a hot plasma [32]. The 
amount of heating increased with the number of trapped 
ions and depended on the alignment of the magnetic field 
with the trap symmetry axis. With about 2000 trapped ions 
and a misalignment greater than 0. lo, the plasma rotation 
frequency could not be increased beyond the point where 
heating first occurred. This limited the density to values 
much less than the Brillouin limit. An explanation of the 
apparent heating is given in Section 5.3. The rotation fre- 
quency was measured from the Doppler-generated side- 
bands produced by the plasma rotation on the electron spin 
flip transition in the ground state of Be' [32]. With laser- 
cooled Be' ions at B = 0.8T, the ion density ranged from 
107cm-3 at low rotation frequency to 2 x 108cm-3 at the 
Brillouin limit. At 6 T, a density of about 1 x 10" cm-3 was 
obtained at the Brillouin limit. 

While high density plasmas are important for some 
experiments (for example, for studying plasmas near the 
Brillouin limit or for maximizing the number of trapped 
charged particles), many experiments require lower density 
plasmas but with a good control of the rotation frequency. 
For example, in an atomic clock based on ions in a Penning 
trap, one of the largest systematic frequency shifts is the 
time dilation shift due to the plasma rotation. The time dila- 
tion shift due to the plasma rotation goes through a 
minimum at a particular rotation frequency [33]. Improved 
frequency standard performance can therefore be obtained 
by stabilizing w, to this optimum rotation frequency. Laser 
beam torques can be used with measurements of w,  to set (0, 
to this optimum rotation frequency. How nearly constant w ,  
can be kept with time needs to be investigated and will 
likely determine the ultimate frequency stability that can be 
obtained in a Penning trap frequency standard. 

5. Electrostatic modes 

Much progress has been made recently in understanding the 
collective oscillations of small, cold, nonneutral plasmas 
trapped in Penning traps. In several recent experiments, 
both magnetized plasma [lS, 32, 34, 351 and upper hybrid 
[lS, 361 oscillations have been excited and studied. Evidence 
for the excitation of plasma modes was also reported in Ref. 
[37]. The measured frequencies agree with a recent cold 
fluid theory for the normal modes of a magnetized plasma 
spheroid [38], although in one experiment [34] noticeable 
frequency shifts were induced by the effects of finite tem- 
perature and trap anharmonicity. These effects are a subject 
of current theoretical work 134, 391. 

Excitation and detectioii of plasma modes may have 
several applications. Since the mode frequencies depend on 
the density, rotation frequency, temperature, and shape of 
the plasma, a measurement of mode frequencies may 
provide a diagnostic for these important plasma parameters. 
This technique may be particularly valuable as a nonde- 
structive diagnostic for experiments where laser fluorescence 
imaging techniques are inapplicable, such as those involving 
electron, molecular ion [37], positron [40, 411, or anti- 
proton 1421 plasmas. Other techniques for obtaining infor- 
mation about these plasmas involve ejecting the plasma 
from the trap, and are thus destructive. 
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Collective modes can also piay an important role in 
plasma confinement [43]. Field errors in the trapping 
potential can excite plasma modes and thereby enhance loss 
of the plasma. Excitation of the plasma modes can therefore 
set a practical limit on the density and number of particles 
stored in a Penning trap. Resonant excitation of plasma 
modes by static field errors have already been observed to 
heat the plasma in Penning trap experiments and limit the 
density [l5,  321. 

Measurement of the electrostatic modes of a Penning trap 
plasma can also be a useful tool for studying the dynamics 
of nonneutral plasmas under various conditions. Such 
studies have already provided important insights into 
plasma behavior in long cylindrical traps in which the con- 
fiaement potentials are not harmonic [44]. The effect of 
finite length on the linear modes of such a plasma has pre- 
viously been considered only through approximations such 
as perturbation theory applied to an approximate finite 
length equilibrium [45]. On the other hand, an analytic 
form for all the electrostatic cold fluid eigenmodes and 
eigenfrequencies has recently been found for small, cold 
spheroidal plasmas in a Penning trap [38]. This is the only 
realistic finite-length geometry for which exact fluid mode 
eigenfrequencies and eigenfunctions have been calculated. A 
Penning trap with nearly pure quadrupole electrostatic 
potential may therefore be a useful geometry for nonneutral 
plasma studies when a detailed understanding of eigenmode 
structure and frequency is needed. For example, for cryoge- 
nic plasmas, a measurement of the shifts of the mode fre- 
quencies from the predictions of cold fluid theory can be 
related to the bulk and shear moduli of the plasma [46]. A 
measurement of the damping of the modes may provide 
information on the plasma viscosity. Such measurements 
could be performed with a strongly correlated plasma over 
a range of magnetic field strengths where very little informa- 
tion is presently available. 

5.1. Theoretical developments 
We first briefly describe recent theoretical deve!opments in 
the fluid theory of normal modes in trapped nonneutral 
plasmas. Section 2 explained that a nonneutral plasma in 
thermal equilibrium in a harmonic trap at zero temperature 
is a uniform density spheroidal plasma rotating at frequency 
w,. In cold fluid theory the linear electrostatic normal 
modes of this plasma are described by Maxwell's equation 
for the perturbed potential $(x, t ) :  

v * &(X) V$ = 0, (9) 
where E@) is the dielectric tensor for the magnetized plasma 
spheroid, 

with el = 1 - oi / (w2 - R:), c2 = Q,wi/[o(w2 - a:)], and 
c3 = 1 - wi/w2 [lS]. Here w is the mode frequency as seen 
in a frame rotating with the plasma, and R, = i2 - 2w, is the 
vortex frequency, which is the cyclotron frequency in the 
rotating frame. The boundary conditions we consider are 
$ = 0 at I x I --t m (image charges are neglected). 

Analytic solutions of eq. (9) are generally available in only 
a few standard geometries for which a separable solution 

can be found, and a spheroidal Penning trap plasma is not a 
standard geometry. However, Dubin [38] showed that eq. 
(9) is separable for a spheroidal Penning trap plasma in an 
unusual set of frequency dependent coordinates. The normal 
modes can be thought of as spheroidal harmonics. That is, 
outside the plasma the mode potential takes the form 

$""' = A e-i"'+imdQ;"(4:l/d)P;"(52), (10) 
where Q;" and P;" are Legendre functions, (tl, t,, 4) are 
spheroidal coordinates [47], d JG: is half the dis- 
tance between the foci of the plasma spheroid, and 1 and m 
are mode numbers determining the order of the spheroidal 
harmonic. For a spherical plasma, d + 0, (ti, 4:,, 4) 
approach spherical coordinates (r ,  cos 8, 4), and I/?' 
approaches the usual form for a spherical multipole 
moment, 
$out ~ e - i u t + i m d  - I - l p m  r (cos e). 
Inside the cloud, the potential variation depends on mode 
frequency; details may be found in Refs [lS, 381. 

5.2. Experimental measurements 
Some of the 1 = 2 modes have been measured in the NIST 
laser-cooled ion experiments. These are quadrupole excita- 
tions, which in general correspond to deformations of the 
spheroid into a tiiaxial ellipsoid (an ellipsoid in which the 
three principal axes differ in length) with a time-dependent 
shape and/or orientation [39]. The form of these 1 = 2 
modes are shown in Fig. 6. For 1 = 2 and m = 0, the mode 
corresponds to axisymmetric radial and axial compressions 
of the spheroid. For w, < R, the radial conpressions are 
upper hybrid oscillations near the cyclotrcn frequency, 
while the axial compressions are magnetized plasma oscil- 
lations near the trap axial frequency. A comparison between 
theory [l5, 381 and experiment [ lS,  321 for the dependence 
of these mode frequencies on the plasma shape (or rotation 
frequency) is shown in Fig. 7 for the laser-cooled ion 
plasmas. In these experiments, the mode is excited by apply- 
ing a sinusoidal potential between the ring ana endcap elec- 
trodes. The modes were detected by a change in the ion 
fluorescence when the applied frequency was resonant with 
the mode frequency. As Fig. 7 shows, excitation of the (2, 0) 
modes may be a useful way to determine the plasma rota- 

I 
(2,O) (L1) w.1 

Fig. 6. Schematic picture of the three 1 = 2 normal modes of oscillation. (a) 
The (2 ,  0) mode is an oscillation of the length and radius of a spheroid 
whose axis of symmetry is oriented along the z direction. (b) The (2, 1) 
mode is a slight tilt of the plasma with respect to z ;  the tilted plasma then 
precesses around the z axis. (c) In the (2, 2) mode, the plasma is slightly 
distorted into a triaxial ellipsoid with a principal axis along the z direction. 
The ellipsoid then rotates around the z axis (from Ref. [39]). 
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Fig. 7 .  (a) Plasma mode frequency wy0 as a function of the rotation fre- 
quency w,.  The circles and triangles give the experimental data. The solid 
line gives the cold-fluid model predictions. The dashed and dotted lines 
give the high- and low-magnetic-field calculations for wT0, respectively. (b) 
Upper hybrid mode frequency w;, as a function of the rotation frequency 
w, for uLi'CI = 0.151. The circles give the experimental data. The solid line 
gives the cold-fluid model predictions. All frequencies are expressed in units 
of the cyclotron frequency R (from Ref. 1151). 

tion frequency, or equivalently the plasma shape, for a 
broad range of w,/R values. Figure 7(a) also shows the tran- 
sition from strongly magnetized behavior of the plasma 
mode at low w, to unmagnetized behavior at the Brillouin 
limit. 

Recently, an experiment at NIST used plasma modes to 
determine the aspect ratio of pure electron plasmas in a 
cryogenic (4 K) Penning trap [35]. The modes were detected 
through image currents induced in one of the endcap elec- 
trodes. Experimentally, modes with frequencies near the 
single-particle axial frequency w, could be detected. Imme- 
diately after a plasma of electrons was loaded into the trap, 
only the center of mass mode was observed. However, after 
a period of time that depended on the magnetic field, other 
modes were observed. The evolution of the mode fre- 
quencies was followed as a function of time. The detected 
modes were identified within the framework of Dubin's cold 
fluid theory [38] as drumhead modes of a two-dimensional 
disk. With some plasmas up to eight modes were identified 
which were used to provide seven different estimates of the 
plasma aspect ratio. The discrepancy between the different 
estimates was less than 20%. The drumhead modes were 
detected when the plasma aspect ration a was about 0.02 or 
smaller. The decrease in a as a function of time could then 
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be followed until a N 0.002. In these experiments the 
number of electrons, determined from the center-of-mass 
mode signal [48], was between 20000 and 100000. Mea- 
surement of the plasma modes was the only known method 
for determining the plasma shape. The modes observed in 
these experiments may be related to the features observed in 
Ref. [37]. 

The low-frequency (2, 0) quadrupole mode has also been 
measured in pure electron plasmas which are cooled by col- 
lisions with a buffer gas to near room temperature [34]. 
Here the modes were also detected through the image 
charges they induced on the surrounding electrode struc- 
ture. In these experiments, the Debye length was not negligi- 
ble compared to the plasma size, the plasma was not in 
thermal equilibrium, and the plasma was not necessarily 
small compared to the electrode diameters. Nevertheless the 
cold fluid theory worked fairly well as a starting point in 
describing the (2, 0) frequency. A perturbative treatment of 
the effects of finite temperature gave better agreement with 
the measurements, and particle-in-cell simulations of the 
modes gave very good agreement with the experiments. 

Recently, a number of ( I ,  m = I) modes for I < 4 have been 
observed using image currents in large ion plasmas [36]. 
The modes were used to determine the plasma rotation fre- 
quency and show that the ion density was near the Brillouin 
density. In this experiment the high densit)) was obtained by 
loading ions continuously at a rate that was fast compared 
with the loss rate of ions from the trap. Measurement of the 
plasma modes was the best method for determining the 
plasma rotation frequency in this experiment. 

5.3. Resonant interactions with staric,fieId errors 
Resonant interactions between normal modes and an exter- 
nal static error in the trap fields have also been observed 
[l5, 321. Such interactions may heat the plasma and limit 
ion confinement. An example is the heating resonance dis- 
cussed in Section 4 which was observed when laser torques 
were used to increase the plasma rotation frequency. In this 
experiment, a range of plasma rotation frequencies where 
the plasma acquired a diffuse boundary and the low fluores- 
cence characteristic of a hot plasma was observed. The 
range over which this apparent heating occurred depended 
sensitively on the angle Bo between the trap's symmetry axis 
and the magnetic field direction. For 6 ,  > 0.1" the plasma 
rotation frequency could not be increased beyond the point 
where heating first occurred. The heating appeared to get 
stronger with an increase in the number of ions. Further- 
more, Bo could be adjusted to less than 0.01" by searching 
for an alignment which gave no apparent heating. (This 
assumes that the trap is aligned when the heating is mini- 
mized.) 

This heating resonance has been identified as an excita- 
tion of an I = 2 and m = 1 plasma mode by the asymmetry 
associated with the misalignment of trap and magnetic axes. 
The (2, 1 )  mode consists of a tilt of the plasma spheroid with 
respect to the magnetic axis. The spheroid then precesses 
around the axis at one of three possibie rates for a given 
plasma rotation frequency and shape [see Fig. 6(b)]. For 
certain plasma parameters this mode can be zero frequency 
in the laboratory frame; that is, the precession can be equal 
in magnitude and opposite in direction to the rotation fre- 
quency, so that the plasma shape appears to be a stationary 
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are experimental measurements of the location of the heating resonance. 
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tilted spheroid in the laboratory frame (within this shape the 
ions in the plasma continue to circulate). The mode can then 
resonantly interact with a static field error. 

Figure 8 shows the measured rotation frequencies w ,  
where heating occurred for different trap axial frequencies 
w,, when the trap was misaligned by Bo N 0.02”. Also shown 
(solid line) is the rotation frequency at which the (2 ,  1) mode 
has zero frequency in the laboratory frame of reference, cal- 
culated from the cold fluid dispersion relation [l5, 32, 381. 
There is excellent agreement between the predicted and 
measured resonant rotation frequencies. For comparison 
this figure also shows predictions for when other m = 1 
modes reach zero frequency in the laboratory frame [lS]. 
These other modes may also cause heating resonances. In 
experiments on larger plasmas several heating resonances 
have been observed, although as yet they have not been 
identified. 
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